ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, BANGALORE - 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ – 2017

S. S. L. C. EXAMINATION, JUNE, 2017

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 17.06.2017]

Date : 17. 06. 2017]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 71

CODE NO. : 71

ವಿಷಯ : ಎಲಿಮೆಂಟ್ಸ್ ಆಫ್ ಇಂಜಿನಿಯರಿಂಗ್

Subject : ELEMENTS OF ENGINEERING

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ/ Regular Repeater)

[Max. Marks : 50

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
		SECTION - A	
1.	a)	amplitude	
	b)	metal conduit system	
	c)	current coil & pressure coil	
	d)	series motor	
	e)	mutual induction	
	f)	carburettor	
	g)	overheating	
	h)	cast iron	
	i)	centrifugal pump	
	j)	grate	$10 \times 1 = 10$

RR-XXIII-8019

[Turn over

[[] ಗರಿಷ್ಠ ಅಂಕಗಳು : 50

71

CCE RR

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
2.	a)	$\underline{I \ Law}$: When a conductor cuts the magnetic flux, an	
		<i>emf</i> is induced.	
		<u>II Law</u> : The magnitude of the induced emf is equal to	
		the rate of change of flux linkages.	2
	b)	Types of self excited <i>d.c.</i> generators :	
		i) Series generator	
		ii) Shunt generator	
		iii) Compound generator	3
	c)	D.C. motor is an electrical machine which converts	
		electrical energy into mechanical energy.	
		<u>Applications</u> :	
		i) Electric trains	
		ii) Trolley cars	
		iii) Wood turning machines	
		iv) Lathe machines	
		v) Machine tool driving	
		vi) Punch presses	
		vii) Elevators	
		viii) Hoist conveyors	
		ix) Rope drivers	
		x) Rolling mills.	2 + 3
3.	a)	No. of cycles per second of an <i>a.c.</i> quantity is called	
		frequency. The unit of frequency is hertz (Hz) $f = \frac{PN}{120}$.	2
	b)	Advantages of the squirrel-cage induction motor :	
		i) Starting of motor is very simple	
		ii) It is robust in construction	
		iii) Cost is low	
		iv) Maintenance is easy	
		v) It has high starting torque	
		vi) No question of wear & tear.	3

RR-XXIII-8019

Qn. Sub. Nos. Qn.No	Value Points	Marks
c)	Fluorescent lamp : S FLUORESCENT GLASS THE $RTTTTTTTT$	
	B - Ballast or choke $C - Capacitor$ $E - Electrodes$ $S - Starter.$ FTL consists of a long glass tube internally coated withfluorescent powder. It operates with extra devices likeglow starter & choke. The FTL connection is shown inthe circuit diagram.When the supply is given to the lamp, the full voltage isreceived by starter and heats the electrodessufficiently. The starter opens the circuit. A 1000 voltinduces in choke & lasting 1 or 2 seconds. This surgevoltage is enough to heat the electrodes toincandescence and voltage falls to 100 to 110 V.Tubelight has small amount of mercury along withargon gas. The temperature of heat vaporizes themercury & finally current discharges in mercuryvapour and emits ultraviolet radiations and this acts to	

RR-XXIII-8019

3

[Turn over

71

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
			3 + 2
4.	a)	Sources required for power generation.	
		Hydroelectric power — River water	
		Thermal power — Solid coal.	2
	b)	Electric bell :	
		Clapper Soft Iron Piece Adjustment Adjustment Copper Chading ring Bell Switch The Supply	4
	c)	Short notes :	
		i) <u>Back <i>emf</i></u> : The <i>emf</i> induced in a conductor to act	
		in opposition to the applied voltage is called back $emf. E_b = V - I_a R_a.$	
		ii) <u>Transformer</u> : It is a static device, which transfers	
		electrical power (energy) from one circuit to	
		another circuit without changing their frequency	
		and power. It has primary & secondary windings.	
		There are 3 types of transformer :	
		i) Step-up transformer	

RR-XXIII-8019

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
		iii) Berry type transformer	
		iii) <u>Indoor wiring</u> : Indoor wiring brings the various	
		electrical points, which are laid according to I.S.	
		rules. There are 5 types of indoor wiring systems :	
		i) Cleat wiring	
		ii) CTS wiring	
		iii) Casting & capping wiring	
		iv) Conduit wiring	2 + 2
		v) Metal sheathed wiring.	
		SECTION - B	
5.	a)	Boiler is a closed metallic vessel in which water is	
		heated by the application of heat and converted into	
		stream.	2
	b)	Pressure gauge is used to indicate the pressure of the	
		steam inside the boiler. It is one of the important boiler	
		mounting.	2
	c)	Sketch of locomotive boiler.	
		Locomotive boiler is generally used in locomotives. It is	
		also used for stationary purposes. It consists of steam	
		barrel, combustion chamber, smoke box, flue tubes,	
		grate ash pan, chimney. The steam can be generated	
		up to a pressure of 25 kg/t (mg)	
		Sketch	4
		Description	2
			6
6.	a)	Heat engine is a mechanical device in which heat	

RR-XXIII-8019

[Turn over

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
		energy is converted into mechanical energy.	2
	b)	In two-stroke engine the power is developed in every	
		two strokes of the piston or one revolution of the	
		crankshaft.	1
		In four-stroke engine the power is developed in every	
		four strokes of the piston or two revolutions of	
		crankshaft.	1
	c)	Sketch of a simple carburettor.	
		Carburettor is used in petrol engine. The main function	
		of the carburettor is to mix the petrol and air in	
		proportion. It consists of a float and needle. From the	
		carburettor the mixture of petrol and air is supplied to	
		the engine cylinder.	
		Sketch	4
		Description	2
			6
7.	a)	Turbines are classified as	
		i) Water turbine	
		ii) Gas turbine	
		and further divided according to working principle	
		i) Impulse turbine	
		ii) Reaction turbine.	2×1
	b)	The centrifugal pump can run at higher speed. Delivery	
		is continuous, priming is necessary, can handle dirty	

RR-XXIII-8019

Qn. Nos.	Sub. Qn.No.	Value Points	Marks
		water. Wear and tear is less, maintenance cost is less.	
			$4 \times \frac{1}{2}$
	c)	Sketches of Pelton wheel.	
		Pelton wheel is an example of impulse turbine. It	
		consists of blades or buckets in the shape of	
		hemispherical cup shape. The water from one or more	
		nozzle hit the cups at the centre due to the impulse of	
		water wheel rotates. It is one of the important prime	
		movers used in hydroelectric generation station to drive	
		electric generator.	
		Sketch	4
		Description	2
			6

=